نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی اصفهان

چکیده

ترکیب گیاه‌پالایی و بتن متخلخل فناوری جدیدی است که در آن تحت عنوان تصفیه طبیعی از بتن متخلخل و گیاهان مقاوم برای حذف یا کاهش غلظت آلاینده‌ها استفاده می‌شود. در این پژوهش عملکرد بتن متخلخل همراه با مواد افزودنی همچون پوکه معدنی و پرلیت به عنوان بستر و گیاه وتیور بر روی پساب شهری مورد بررسی قرار گرفته است. مکعب مستطیل‌هایی از بتن متخلخل با ابعاد 30×30×15 سانتی‌متر مکعب (که به ترتیب طول، عرض و ارتفاع می‌باشد) ساخته و گیاه مورد نظر با دو تراکم متفاوت (12 و 27 بوته گیاه) در بین بتن‌ها قرار داده شد. پس از گذشت زمان‌های ماند مورد نظر (5، 7 و 9 ساعت) جریان پساب از حوضچه ورودی و خروجی نمونه‌برداری شد و آزمایش‌های تعداد کل کلی‌فرم، اکسیژن‌خواهی بیولوژیکی(BOD)، اکسیژن‌خواهی شیمیایی (COD) و کل جامد معلق (TSS) بر روی نمونه‌ها انجام گرفت. اثر بتن متخلخل، تراکم گیاهی و زمان‌ماند با استفاده از طرح کاملاً تصادفی مورد بررسی قرار گرفتند. به طور متوسط در زمان‌ماند 5 ساعت BOD، COD، TSS و کلی‌فرم به ترتیب 1/16، 5/27، 6/20 و 1/19 درصد کاهش یافت. همچنین به طور متوسط در زمان‌ماند 7 ساعت BOD، COD، TSS و کلی‌فرم به ترتیب 5/20، 33، 1/26 و 3/25 درصد کاهش یافت. در زمان‌ماند 9 ساعت نیز به طور متوسط BOD، COD، TSS و کلی‌فرم به ترتیب 9/25، 5/38، 9/31 و 5/30 درصد کاهش یافت. در مجموع این طرح در حذف BOD، COD و TSS موفق عمل نمود و در حذف کلی‌فرم نیز عملکرد خوبی داشته است.

کلیدواژه‌ها

عنوان مقاله [English]

Improvement the quality of urban Wastewater using combination of Bioremediation and porous concrete

نویسندگان [English]

  • jahangeer abedi koupaee
  • Afshin Baniasadi
  • Mohammad Mehdi Dorafshan

sfahan university

چکیده [English]

The combination of phytoremediation and porous concrete is a new technology used as a natural purification of porous concrete and resistant plants to remove or reduce the concentration of pollutants. In this study, the performance of porous concrete as a bed and plant on reduction of urban effluent pollution has been investigated. A channel with dimensions of 9 meters length, 30 cm wide and 20 cm height was constructed along with the wastewater treatment lagoon of Isfahan University of Technology. Then, blocks were made of porous concrete with dimensions of 30 × 30 × 15 cm, and placed in the channel. The vetiver grass with two different densities (12 and 27 plants) were placed between the porous concrete blocks. After 5, 7 and 9 hours, the wastewater samples were taken from the inlet and outlet basins. The reduction of BOD, COD, TSS and total coliform during the 5 hours retention time, were 16.1, 27.5, 20.6, and 19.1 percent, respectively. In the retention time of 7 hours, reduction were equal to 20.5, 33, 26.1 and 25.3 percent, respectively. The reduction of BOD, COD, TSS and total coliform during the 9 hours retention time, were 25.9, 38.5, 31.9 and 30.5 percent, respectively. In general, this research showed the performance of system was optimistic in reduction of BOD, COD, TSS and Total coliform

کلیدواژه‌ها [English]

  • Bioremediation
  • Wastewater
  • Porous concrete
  • Vetiver
Abedi-Koupai J., Mohri-Esfahani E. 2012, March. Desalination of water using nanoparticles of husk ashes in sand filter. In Proceedings of the Fourth International Conference on Nanostructures, ICNS4 (pp. 12-14).
Abedi-Koupai J. 2003. Potential uses of phytoremediation technology for nickel-polluted soils. In 6th International Conference on Civil Engineering (ICCE), Isfahan University of Technology, Iran.
Abedi-Koupai J., Jamalian M.A., Dorafshan, M.M. 2020. Improving Isfahan Landfill Leachate Quality by Phytoremediation Using Vetiver and Phragmites Plants in Green Space Irrigation. Journal of Water and Wastewater, 31(3), pp.101-111. (In Persian)
Apha A. 2005. Wpcf. Standard Methods for the Examination of Water and Wastewater, 20.
Arab Nasrabadi V. 2017. Improving the quality of urban wastewater using vetiver in artificial wetland system. M.Sc Thesis. Faculty of Agriculture. Isfahan University of Technology, Iran. (In Persian)
Choi I.S., Jang S.H., Oh J.M. 2010. Examination for purification ability of water quality by applying the porous concrete. Kor J Limnol, 35(4), pp.312-319.
Javaheri M. 2013. Improvement of sewage treatment effluent effluent quality using porous concrete. M.Sc Thesis. Faculty of Agriculture. Isfahan University of Technology, Iran. (In Persian)
Kavousi A., Borghei M. 2005. Use of mineral pumice as biofilm support in biological wastewater treatment. Environmental Science, 8, pp.29-42. (In Persian)
Lettinga G. 1995. Anaerobic digestion and wastewater treatment systems. Antonie van leeuwenhoek, 67(1), pp.3-28.
Maharjan A., Pradhanang S. 2017. Potential of vetiver grass for wastewater treatment. Environment and Ecology Research, 5(7), pp.489-494.
Noshadi M., Valizadeh H. 2016. Effect of Vetiver plant on reducing salinity and soil salts. Water and Soil J. 30(5), pp.796-804. (In Persian)
Oshunsanya S., Oluwasemire K., Ogunwumi, K., 2012. The use of vetiver grass slips in removing heavy metal contamination of dumpsite in Ibadan metropolis. Scholarly Journal of Agricultural Science, 2(6), pp.115-118.
Raman J.K., Gnansounou E., 2015. LCA of bioethanol and furfural production from vetiver. Bioresource technology, 185, pp.202-210.
 Saghaian Nejad S., Abedi-Koupai J., Mostafazadeh-Fard S., Behfarnia K. 2018. Treatment of urban storm water using adsorbent porous concrete. Water Management. 17(6), pp. 328-334.
 Siahi M., Mehrdadi K., Liaghat A., Adl M., Ehteshami M., Ashrafi A., Ghoddosi F., Zarnekabi M. 2010. Standards and experience of using wastewater for irrigation. Iran: National Committee on Irrigation and Drainage. (In Persian)
Sikka R., Nayyar V., Sidhu S.S. 2009. Monitoring of Cd pollution in soils and plants irrigated with untreated sewage water in some industrialized cities of Punjab, India. Environmental monitoring and assessment, 154(1), pp.53-64.
Simmons R.W., Ahmad W., Noble A.D., Blummel M., Evans A., Weckenbrock P. 2010. Effect of long-term un-treated domestic wastewater re-use on soil quality, wheat grain and straw yields and attributes of fodder quality. Irrigation and Drainage Systems, 24(1), pp.95-112.
Subrahmanyam M., Boule P., Kumari V.D., Kumar D.N., Sancelme M., Rachel A. 2008. Pumice stone supported titanium dioxide for removal of pathogen in drinking water and recalcitrant in wastewater. Solar Energy, 82(12), pp.1099-1106.
Taghizadeh M. M., Torabian A., Borghei M., Hassani A. H. 2007. Feasibility study of water purification using vertical porous concrete filter. Int. J. Environ. Sci. Technol. 4(4), pp. 505-512.
Teimori A., Mousavi F., Karami J., Farzin S. 2016. Performance of porous concrete containing an additive to reduce urban flood. Journal of Structural Analysis Earthquake. 13(2), pp.33-43. (In Persian)
Torkan A., Ahmadi M. 2005. Environmental Biotechnology Basics and Applications (Translation), Scientific Publishing Institute of Sharif University of Technology, Tehran. (In Persian)
Wilderer P.A., Schreff D. 2000. Decentralized and centralized wastewater management: a challenge for technology developers. Water Science and Technology, 41(1), pp.1-8.
Wu Y.F., Lu X.W., Jia Y., Shi J. 2010. Water quality improvements and community characteristics in simulated rivers using porous concrete embankments. Sustainable Environment Research, 20(5), pp.317-323.