نوع مقاله : مقاله پژوهشی

نویسندگان

دانشیارگروه مهندسی آب، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

آبشستگی موضعی پایه‌های پل یکی از مهمترین عوامل تهدید کننده پایداری پل‌های احداث شده بر رودخانه‌ها می‌باشد. این پدیده توسط جریان‌های گردابه‌ای برخاستگی و نعل اسبی اتفاق می‌افتد. یکی از عوامل مهمی که باعث تشدید عمق آبشستگی پایه‌های پل شده و مورد توجه محدودی قرار ‌گرفته است، تجمع اجسام شناور و شاخه و برگ درختان در اطراف پایه است. پل‌های زیادی به دلیل این عامل ناپایدار و تخریب شده‌اند. در این شرایط به دلیل کاهش سطح مقطع دهانه ورودی پل و افزایش سرعت جریان، عمق آبشستگی تا چند برابر شرایط عادی افزایش می‌یابد. تاکنون روابط و یا روش‌های محدودی برای تخمین عمق آبشستگی موضعی پایه پل ناشی از تجمع اجسام شناور ارائه شده است. در این تحقیق با استفاده از داده‌های آبشستگی پایه پل در دو کانال آزمایشگاهی و بر اساس رابطه معتبر CSU (ریچاردسون و دیویس، 2001)، روابط بدون بعد جدیدی به منظور تخمین عمق آبشستگی پایه پل ناشی از تجمع اجسام شناور مستطیلی و مثلثی ارائه شده است. مقادیر بهینه ضرایب و نماهای این روابط با استفاده از اصول بهینه-سازی محاسبه شده است. معادله اصلاحی CSU در این تحقیق در هر دو مرحله واسنجی و صحت‌سنجی، نتایج مناسب و قابل قبولی داشت. حداکثر خطای نسبی این معادله در این مراحل به‌ترتیب 1/10 و 4/8 درصد بود. همچنین متوسط خطای نسبی این معادله در مراحل واسنجی و صحت‌سنجی به‌ترتیب 2/2 و 8/2 درصد بدست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Prediction of Maximum Scour Depth at Bridge Piers in Case of Debris Accumulation

نویسندگان [English]

  • Abdolreza Zahiri
  • Mahdi Meftah

Associate professor, Water Engineering Department, Water and soil Engineering Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

چکیده [English]

Local scour at the bridge piers is one of the most important factors threatening the stability of the bridges constructed on the rivers. This issue is mainly due to wake and horse shoe vortices. One of the key factors which intensify the local scour depth in bridge pier and usually is not considered is the accumulation of wooden debris in front of the pier. Many bridges have been unstable or collapsed due to this problem. By accumulation of wooden debris in front of bridge piers, the effective flow area around the piers is decreased and hence the flow velocity will be increased which led to increasing of the scour depth to several times of the normal conditions. There are limited relationships or approaches for estimating the scour depth in the case of debris accumulation at the bridge piers. In this study using experimental data of two laboratory flumes and based on the well-known equation of CSU, dimensionless equations have been presented for prediction of the scour depth in the presence of rectangular and triangular wooden debris. The optimum values of the coefficients and exponents of these new equations have been determined using optimization techniques. The modified CSU equation has suitable and acceptable results in both calibration and validation phases. The maximum percentage of error for the proposed equation is 10.1 and 8.4 in calibration and validation phases, respectively. Also, the mean error of this equation is 2.2 and 2.8 percent, respectively.

کلیدواژه‌ها [English]

  • Local scour
  • Bridge pier
  • Wooden debris
  • CSU equation
  • Optimization
Bradley J.B., Richards D.L. and Bahuer C.D. 2005. Debris control structures evaluations and countermeasures. Third Edition, Hydraulic Engineering Circular 9 (HEC-9), FHWA, Washington, DC.
 
De Cicco P.N., Solari L. and Paris E. 2015. Bridge clogging caused by woody debris: Experimental analysis on the effect of pier shape. 3rd Int. Conf. on Wood in World Rivers, Padova, Italy.
 
Diehl T.H. 1997. Potential drift accumulation at bridges. FHWA RD-97-28, Federal highway administration research and development, U.S. Department of Transportation, McLean, VA, 1997.
 
Ettema R., Constantinescu G., and Melville B. 2011. Evaluation of bridge scour research: Pier scour processes and predictions. Transportation Research Board. NCHRP, Report No. 175.
 
Fallah Golneshini N.N. 2012. Experimental study on scour depth at bridge pier with debris accumulation. M.Sc. Thesis in Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, 120 pp. (In Persian)
 
Ghasemi E., Zahiri A., Meftah M., Dehghani A.A. 2017. Controling local scouring around bridge pier using nano-structured materials, Water and Soil Science, 27(3): 79-91. (In Persian)
 
Gurnell A.M. 2014. Plants as river ecosystem engineers, Earth Surface Processes and Landforms, 39:4-25.
Gurnell A.M., Piégay H., Swanson F.J., and Gregory S.V. 2002. Large wood and fluvial processes. Freshwater Biology. 47(4):601-619.
 
Jafargholi K. 2012. Estimating scour depth at bridge pier with debris accumulation using SSIIM. M.Sc. Thesis in Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources,110 pp. (In Persian)
 
Julien, P.Y. 2002. River Mechanics, Cambridge University Press, 434 pp.
 
Lagasse, P.F., Clopper P.E., Zevenbergen L.W., Spitz W.J., and Girard L.G. 2010. Effects of debris on bridge pier scour. National Cooperative Highway Research Program, NCHRP.
 
Li, K., Coe Y., Ramankutty M.T.  and De Jong R. 2007. Modeling the hydrological impact of land use change in West Africa. J. Hydrology, 337:258-267.
 
Mazzorana B., Hubl J., Zischg A., and Largiader A. 2011. Modelling woody material transport and deposition in alpine rivers. Nat. Hazards, 56(2):425-449.
Melville B.V., and Coleman S.E. 2000. Bridge scour. Water Resources Publications, LLC, Colorado, USA, 180 pp.
 
Melville, B.W., and Dongol D.M. 1992. Bridge pier scour with debris accumulation. J. Hydraul. Eng. 118(9):1306–1310.
 
Mortazavi, V., Zahiri A., Meftah M., Dehghani A.A., and Hezarjeribi A. 2015. Experimental investigation of debris accumulation on local scour at bridge pier under unsteady flow conditions. Research Report, Gorgan University of Agricultural Sciences and Natural Resources, 40 pp. (In Persian)
 
Moshashaie S.M., and Asadi Aghbolaghi M. 2016. Scour around a square pier with parabolic nose in presence of woody debris in front of pier. Modares Civil Engineering Journal, 15(4):85-96. (In Persian)
 
Moshashaie S.M., Asadi Aghbolaghi M., and Samadi Brojeni H. 2015. Effect of woody debris accumulation on the scour in front of a circular shaped pier with plate pile system. Water and Soil Science, University of Tabriz, 25(2):141-153. (In Persian)
 
Najafzadeh M., Rezaei Balf M., and Rashedi E. 2016. Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. J. Hydroinformatics, 18(5):867-884.
 
Pagliara, S., and Carnacina L. 2010. Temporal scour evolution at bridge piers: effect of wood debris roughness and porosity. J. Hydraul. Res., 48(1):3-13.
 
Pagliara S., and Carnacina L. 2011. Influence of wood debris accumulation on bridge pier scour. J. Hydraul. Eng., 137:254-261.
 
Park J.H., Chamroeun S., Park C.K., and Young D.K. 2016. A study on the effects of debris accumulation at sacrificial piles on bridge pier scour. J. Civil Engineering, KSCE, 20(4):1546-1551.
 
Richardson E.V., and Davis S.R. 2001. Evaluating scour at bridges. Fourth Edition, Federal Highway Administration, Washington, DC, 378 pp.
 
Schmocker L., and Hanger W. 2010. Drift accumulation at river bridge. Laboratory of Hydraulics, Hydrology and Glaciology VAW, ETH-Zurich, Zurich, Switzerland.
 
Shields F.D., and Smith R.H. 1992. Effects of large woody debris removal on physical characteristics of a sand-bed river. Aquatic Conservation: Marine and Freshwater Ecosystems, 2:145-63.
 
Talebi A., Shahrivar M., Malekinezhad H., Poormohamadi S., and Hosseini Z. 2019. Investigation of the effects of land use change on flooding and sedimentation in Honifaqan watershed. J. Watershed Management Research, 10(20):25-37. (In Persian)
 
Walleerstein N., and Thome C.R. 2004. Influence of large woody debris on morphological evolution of incised, sand-bed channels. Geomorphology, 57: 53–73.
 
Walleerstein N., Thome C.R., and Doyle M.W. 1997. Spatial distribution and impact of large woody debris in northern Mississippi. Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision, 145-150.
 
Zarrati A.R., Chamani M.R., Shafaie A., and Latifi M. 2010. Scour countermeasures for cylindrical piers using riprap and combination of collar and riprap, Int. J. Sediment Research, 25(3):313-321.