نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه گنبدکاووس، گنبد، ایران

2 دانش آموخته ارشد، گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه گنبدکاووس، گنبد، ایران

چکیده

چندین روش فیزیکی، شیمیایی و بیولوژیکی برای خارج‌سازی نیترات از آب به کار می‌رود که ممکن است گران‌قیمت باشند و به تولید مواد اضافی و زباله‌های سمی منجر شود و در مقیاس وسیع محدودیت کاربرد داشته باشند. در این تحقیق توانایی کربن فعال به منزله جاذب برای خارج سازی نیترات، آمونیوم و فسفات از آب ارزیابی شد. برای این منظور اثر زمان تماس، غلظت اولیه و pH در جذب نیترات، آمونیوم و فسفات بر کربن فعال بررسی شد. خصوصیات سطحی جاذب‌ مورد مطالعه به‌وسیله طیف سنجی و میکروسکوپ الکترونی و سطح ویژه آن‌ها با روش متیلن بلو مشخص شد. از مدل‌های سنیتیکی مرتبه اول و مرتبه دوم برای توصیف داده‌های سنیتیکی و همچنین مدل‌های لانگمویر و فروندلیچ برای توصیف داده‌های هم‌دمای جذب استفاده شد. نتایج این تحقیق نشان داد میزان جذب نیترات، آمونیوم و فسفات با گذشت زمان افزایش یافت و به ترتیب بعد از 60 و 120 دقیقه به حداکثر میزان خود رسید. حداکثر جذب آمونیوم و نیترات کربن فعال در pH=2 و حداکثر جذب فسفات در pH=8 بود. با افزایش غلظت اولیه نیترات، راندمان حذف افزایش یافت و بیشترین راندمان حذف نیترات در غلظت 100 میلی‌گرم بر لیتر برابر با86/88 درصد و بیشترین راندمان حذف آمونیوم در غلظت 5 میلی‌گرم بر لیتر 92 درصد و بیشترین راندمان حذف فسفات در غلظت 7 میلی‌گرم بر لیتر 77 درصد بود. با توجه به نتایج بدست آمده، کربن فعال مورد مطالعه دارای قابلیت بالایی در حذف آلاینده های نیترات، آمونیوم و فسفات بود.

کلیدواژه‌ها

عنوان مقاله [English]

Removal of nitrate, ammonium and phosphate from water using activated carbon

نویسندگان [English]

  • Masumeh Farasati 1
  • maryam saiadi 2

1 Associate professor, Department of Watershed management, Faculty of Agriculture, Gonbad kavous University, Gonbad, Iran

2 Graduated, Department of Watershed management, Faculty of Agriculture, Gonbad kavous University, Gonbad, Iran

چکیده [English]

Background and Objectives
Several physical, chemical, and biological methods are used to extract nitrate from water, which may be expensive and lead to the production of additional materials and toxic wastes, and are widely used.
Materials and Methods
In this study, the ability of activated carbon as adsorbent for the removal of nitrate, ammonium and phosphate from the water were evaluated.
For this purpose, the effect of contact time, initial concentration and pH on the absorption of nitrate, ammonium and phosphate on activated carbon were investigated. Absorbent surface characteristics studied by FTIR and SEM and their surface area were determined by methylene blue. Kinetics models to describe the psuedo-first-order and pseudo-second-order kinetics data and models to describe Langmuir and Freundlich isotherm adsorption data were used.
Results
The results showed that the absorption of nitrate, ammonium and phosphate, over time, increased respectively after 60 and 120 minutes, reached its maximum. Ammonium and nitrate in activated carbon absorption maximum at pH=2 and the maximum adsorption at pH=8. By increasing the initial concentration of nitrate removal efficiency resulted in increased nitrate removal at a concentration of 100 mg/l of 86/88 percent and the highest removal efficiency of ammonia at a concentration of 5 mg/l of 92% and maximum removal of phosphate at a concentration of 7 mg/l 77 percent.
According to the obtained results, the studied activated carbon had a high ability to remove nitrate, ammonium and phosphate pollutants.

کلیدواژه‌ها [English]

  • activated carbon
  • Absorbent
  • absorption kinetics
  • isotherm adsorption
 
 
 
 
 Bingol A., Ucun H., Bayhan Y. K., Karagunduz­ A., Cakicia A., Keskinler B. 2004. Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast. Bioresource technology, 94, 245-249.
Bryan N. S., Van grinsven H. 2013. The role of nitrate in human health. Advances in Agronomy. Elsevier.
Cengloglu Y., TOR A., Ersoz M., Arslan G. 2006. Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology, 51, 374-378.
Cheng I. F., Muftikian R., Fernando Q., Korte N. 1997. Reduction of nitrate to ammonia by zero-valent iron. Chemosphere, 35, 2689-2695.
Chintal A R., Mollinedo J., Schumacher T. E., Papiernik S. K., Malo D. D., Clay D. E., Kumar S., Gulbrandson D. W. 2013. Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous and Mesoporous Materials, 179, 250-257.
Choi H. D., Cho J. M., Baek K., Yang J. S., Lee J. Y. 2009. Influence of cationic surfactant on adsorption of Cr (VI) onto activated carbon. Journal of hazardous materials, 161, 1565-1568.
Demiral H., Gunduzoglu G. 2010. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresource technology, 101, 1675-1680.
Erenturk S., Malkoc E. 2007. Removal of lead (II) by adsorption onto Viscum album L.: Effect of temperature and equilibrium isotherm analyses. Applied surface science, 253, 4727-4733.
Halajnia A., Oustan S., Najafi N., Khataee A., Lakzian A. ­2013. Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Applied Clay Science, 80, 305-312.
Hamoudi S., Belkacemi K. 2013. Adsorption of nitrate and phosphate ions from aqueous solutions using organically-functionalized silica materials: Kinetic modeling. Fuel, 110, 107-113.
Kadirvelu K., Namasivayam C. ­2003. Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd (II) from aqueous solution. Advances in Environmental Research, 7, 471-478.
Katal R., Baei M. S., Rahmati H. T. Esfandian H. 2012. Kinetic, isotherm and thermodynamic study of nitrate adsorption from aqueous solution using modified rice husk. Journal of Industrial and Engineering Chemistry, 18, 295-302.
Ozturk N., Bektas T. E. 2004. Nitrate removal from aqueous solution by adsorption onto various materials. Journal of hazardous materials, 112, 155-162.
Seliem M. K., Komarneni S., Byne T., Cannon F., Shahien M., Khalil A., Eilgaid I. A. 2013. Removal of nitrate by synthetic organosilicas and organoclay: Kinetic and isotherm studies. Separation and Purification Technology, 110, 181-187.
Yao Y., Gao B., Inyang M., Zimmerman A. R., Cao X., Pullammanappalil P., Yang L. 2011. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of hazardous materials, 190, 501-507.
Yin Q., Wang R., Zhao Z. 2018. Application of Mg–Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water. Journal of Cleaner Production, 176, 230-240.