نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

باتوجه به پاسخ مثبت گیاه به نیتروژن، کشاورزان به هر میزان که کودهای نیتروژنی در دست داشته باشند، ازآنها استفاده میکنند. مصرف زیاد کودهای نیتروژنی علاوه بر تحمیل هزینه اضافی برکشاورز، باعث آلودگی محیط زیست و تأثیر مستقیم بر سلامت انسان نیز می­شود. بنابراین ضروری است برای استفاده بهینه از کودهای نیتروژنی، مقدار نیتروژن-نیتراتی موجود در خاک، گیاه و آب آبیاری مشخص شود و در نهایت با توجه به بیلان نیتروژن میزان کمبود نیتروژن محاسبه و به گیاه داده شود و از کاربرد کود بیشتر اجتناب شود. بیشتر روشهای معمول برای اندازه‌گیری نیترات زمانبر و گران قیمت هستند. اندازه­گیری به روش طیف­سنجی (اسپکتروفوتومتر) این امکان را فراهم میکند که در کمترین زمان با کمترین هزینه و با دقت مناسبی میزان نیتروژن-نیتراتی در هر یک از محیط­های خاک، گیاه و آب را محاسبه کرد. در این پژوهش علاوه بر معرفی روش سریع اندازگیری میزان نیترات در هر یک از محیط‌های آب، خاک و گیاه، نتایج برحسب واحد‌های کاربردی در مزرعه و قابل درک برای کشاورزان و دانشجویان از جمله کیلوگرم نیتروژن در هر تن محصول، و میزان نیتروژن به­کاررفته از طریق آبیاری یا نیتروژن موجود در خاک برحسب کیلوگرم بر هکتار زمین ارائه شد.

کلیدواژه‌ها

عنوان مقاله [English]

Fast spectrophotometric measurement of nitrate in water, soil and plant

نویسندگان [English]

  • sajad amirhajloo 1
  • mahdi gheysari 2
  • Mohamad Shayannejad 2

1 PhD Student in Irrigation and Drainage, Department of Irrigation, College of Agriculture, Isfahan University of Technology, Isfahan, Iran

2 Associate Professor, Department of Irrigation, College of Agriculture, Isfahan University of Technology,Isfahan,Iran

چکیده [English]

Considering the plant's positive response to nitrogen, farmers consume nitrogen fertilizers as much as possible. Excessive consumption of nitrogen fertilizers imposes additional costs on farmers, environmental pollution and direct negative impact on human health. Therefore, it is important to determine the amount of nitrogen-nitrate in the soil, plant and irrigation water in order to use nitrogen fertilizers optimally. In addition, according to the nitrogen balance, the amount of nitrogen deficiency is calculated and given to the plant, therefore the overuse of fertilizer is avoided. Most of the usual methods for nitrate measurement are time-consuming and expensive, spectroscopic measurement (spectrophotometer) makes it possible to determine the amount of nitrogen-nitrate in each of the soil, water and plant in the shortest time, inexpensively and accurately. In this research, we introduced a quick method of measuring the amount of nitrate in each of the water, soil and plant. The results are presented in terms of practical units in the field and soil for farmers and students, including kilograms of nitrogen per ton of product and the amount of nitrogen given through irrigation or nitrogen available in the soil in kilograms per hectare.

کلیدواژه‌ها [English]

  • pollution
  • spectrophotometry
  • colorimetry
  • environment
  • Nitrogen
Akbari Asrami O., Bohluly A., Aliakbari Bidokhti A.A. 2021. Estimation of contribution of nitrate pollution sources on the spatial distribution of the pollutant in the Caspian Sea. Iranian Journal of Geophysics 15(3),pp.167-189(In Persion).
Ata-Ul-Karim S.T., Yao X., Liu X., Cao W., Zhu Y. 2014. Determination of critical nitrogen dilution curve based on stem dry matter in rice. PLoS One 9, e104540.
Barber S.A. 1995. Soil nutrient bioavailability: a mechanistic approach. John Wiley and Sons.
Bulgariu L., Bulgariu D. 2012. Direct determination of nitrate in small volumes of natural surface waters using a simple spectrophotometric method. Reviews in Analytical Chemistry 31(3-4), pp.201-207.
Chandna P., Khurana M., Ladha J.K., Punia M., Mehla R., Gupta R. 2011. Spatial and seasonal distribution of nitrate-N in groundwater beneath the rice–wheat cropping system of India: a geospatial analysis. Environmental monitoring and assessment 178, pp.545-562.
Craun G.F., Greathouse D.G., Gunderson D.H. 1981. Methaemoglobin levels in young children consuming high nitrate well water in the United States. International journal of epidemiology 10(4), pp.309-317.
Eickhout B., Bouwman A.v., Van Zeijts H. 2006. The role of nitrogen in world food production and environmental sustainability. Agriculture, ecosystems and environment 116(1-2), pp. 4-14.
García-Robledo E., Corzo A., Papaspyrou, S. 2014. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Marine Chemistry 162, pp.30-36.
Kaiser J. 2001. The other global pollutant: nitrogen proves tough to curb. American Association for the Advancement of Science.
Karrat A., Digua K., Amine, A. 2022. Development of a simplified spectrophotometric method for nitrite determination in water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 267, 120574.
Malkoti M., Nafisi M. 1994. Fertilizer consumption in agricultural lands. Tarbiat Modares University. (In Persion)
Moosavinasab Z., Gholamzadeh F. 2021. Investigation of Nitrate Contamination in Groundwater, Soil, and Crops (Case Study: Fasa Plain). Sustainability, Development & Environment 2(4-8), pp.19-34. (In Persion)
Manassaram D.M., Backer L.C., Messing R., Fleming L.E., Luke B., Monteilh C.P. 2010. Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study. Environmental Health 9, pp.1-12.
McLaren A.D. 1976. Comments on nitrate reduction in unsaturated soil. Soil Science Society of America Journal 40(5), pp.698-699.
Rizvanipour H., Dinani Z. 2014. Chemical analysis of water and soil from an environmental and health point of view. Isfahan University of Technology Jihad Publications. (In Persion)
Self J.R., Waskom R. 2008. Nitrates in drinking water. Service in action; no. 0.517.
Seilsepour M. 2022. Study of concentrations of nitrates and heavy metals in soil and lettuce and risk assessment of its consumption. Journal of Crops Improvement. (In Persion)
Sepaskhah A. 2010. Organic agriculture and water and fertilizer efficiency. Organic Agriculture Conference. Academy of Sciences (Tehran). (In Persion)
Shokrian F., Sabbaq A., Saberi A. 2021. Assessment of Nitrate Pollution of Groundwater Resources in Sari Plain. Degradation and Rehabilitation of Natural Land 1(2), pp.45-58 (In Persion).
Singh J. 1988. A rapid method for determination of nitrate in soil and plant extracts. Plant and soil 110, pp.137-139.
Stephan C.E., Mount D.I., Hansen D.J., Gentile J., Chapman G.A., Brungs W.A. 1985. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. US Environmental Protection Agency Washington, DC.
Vendrell P.F., Zupancic J. 1990. Determination of soil nitrate by transnitration of salicylic acid. Communications in Soil Science and Plant Analysis 21(13-16), pp.1705-1713.
Ward M.H., DeKok T.M., Levallois P., Brender J., Gulis G., Nolan B.T., VanDerslice J. 2005. Workgroup report: drinking-water nitrate and health—recent findings and research needs. Environmental health perspectives 113, pp.1607-1614.
Weyer P.J., Cerhan J.R., Kross B.C., Hallberg G.R., Kantamneni J., Breuer G., Jones M.P., Zheng W., Lynch C.F. 2001. Municipal drinking water nitrate level and cancer risk in older women: the Iowa Women's Health Study. Epidemiology, pp.327-338.
Wolff I., Wasserman A. 1972. Nitrates, Nitrites, and Nitrosamines: Extensive research is needed to establish how great a food hazard these nitrogenous substances present. Science 177, pp.15-19.
Wu J., Hong Y., Guan F., Wang Y., Tan Y., Yue W., Wu M., Bin L., Wang J., Wen J. 2016. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater. Scientific reports 6, pp.1-9.